南开大学研获可穿戴设备新材料:电阻型应变传感器
摘要:近日,记者从南开大学获悉,该校药物化学生物学国家重点实验室刘遵峰、史林启团队联合国内外多个科研团队,研获了一种大形变电阻型应变传感器。这种传感器在电子皮肤、可穿戴电子设备、健康医疗监测以及工业传感器等领域具有巨大应用前景。
近日,记者从南开大学获悉,该校药物化学生物学国家重点实验室刘遵峰、史林启团队联合国内外多个科研团队,研获了一种大形变电阻型应变传感器。这种传感器在电子皮肤、可穿戴电子设备、健康医疗监测以及工业传感器等领域具有巨大应用前景。
目前,国内外市场正刮起新一波可穿戴设备潮,其可用于对个人的生活和运动进行跟踪并提供数据共享,前景广阔,是一项在根本上改变人类医疗健康的新技术。一方面,我国人口老龄化造成医疗需求的急剧增长;另一方面,我国医疗资源供给严重短缺,尤其在偏远地区。供需缺口为移动医疗带来机遇,而移动互联和大数据的高速发展又为移动医疗的发展提供了必要条件。比如,将来,冠心病、高血压、糖尿病等慢性疾病的患者可不仅接受药物治疗,还接受包括远程监测、远程治疗方案调整、生活方式管理、可穿戴式给药在内的整体疾病管理方案。因此,对于可穿戴设备的研发,全世界的科研人员从没有停止过脚步。在南开大学,亦是如此。
据了解,近年来,高分子纳米自组装研究备受关注。高分子与纳米粒子可以自发地形成稳定有序的结构,形成具有新奇电、光、热、力等功能和特性的自组装材料。高分子与纳米粒子的自组装不仅呈现出丰富的形貌,而且也赋予了高分子自组装体动态的功能。
电阻型应变传感器可以通过监测电阻测量形状变化,具有制备简单、检测方便、耗能低的优势,可广泛应用于可穿戴设备与健康医疗监测领域。商业化的金属应变片作为传统的电阻型应变传感器,其测量范围通常小于5%形变,远不能满足可穿戴设备的要求(人体皮肤最大形变超过50%以上)。
常用的电阻型应变传感器是将高分子弹性体与纳米导电粉末混合起来制成复合材料。其原理是利用拉伸形变下导电粉末之间的接触断开,从而导致电阻增加。该方法很灵敏,但是应变与电阻变化很难成正比关系,且响应滞后,因此难以用于准确测量。
基于以上问题,南开大学刘遵峰、史林启团队,制备出了一种双层褶皱结构的电阻型应变传感器。通过对高分子弹性体纤维预拉伸,然后在高分子弹性体表面自组装弹性体薄层和碳纳米管薄层,再释放预拉伸。利用“释放预拉伸”过程中的诱导作用,构建了“褶皱弹体层”+“褶皱碳纳米管”的“双层褶皱”结构,制备了大形变电阻型应变传感器。
据介绍,该“双层褶皱”结构在拉伸下,褶皱之间的接触减小,从而导致褶皱之间接触电阻增大,材料整体的电阻在大形变范围内(200%)随应变呈线性增加。该传感器可用于监测人体运动,肢体弯曲和人体呼吸等,并表现出优异的性能。
近日,介绍该研究工作的论文《ABi-SheathFiberSensorforGiantTensileandTorsionalDisplacements》(用于大形变的拉伸和扭转“双层”纤维位移传感器)发表于材料领域国际权威期刊《AdvancedFunctionalMate⁃rials》(先进功能材料)上,南开大学药物化学生物学国家重点实验室为论文第*单位。该研究受国家自然科学基金、南开大学相关计划等资助。
责编:邓蕊玲
来源:中华液晶网
欢迎投稿
QQ:2548416895
邮箱:yejibang@yejibang.com
或 yejibang@126.com
每天会将您订阅的信息发送到您订阅的邮箱!