欢迎来到大屏幕显示业绩榜 [ 业绩榜首页 - 网站地图 ]
DLP拼接墙百科
关键字: 我要投稿投稿即可获得50分奖励
DMD芯片贡献者:卫小多我要举报
    如果说在色轮的研发上,投影机制造商们还能根据自己的实际需要生产不同的产品,那么DMD芯片就完全掌握在了德州仪器的手中了。经过十多年的发展,DMD芯片不仅尺寸上从0.55吋到0.95吋,技术上也从SDR DMD芯片组发展到了DDR 芯片组,同时分辨率最高已经可以达到了4K(第一块DMD的分辨率仅为16×16),德州仪器甚至将DMD芯片称为世界上最精密的光学元器件。

  DMD的作用就是将色轮透过来的三原色光混合在一起,并且通过数据控制转换为彩色图像。虽然看似简单,但是技术含量极高,那么DMD又是如何实现这一功能的呢?

  DMD是一种整合的微机电上层结构电路单元,利用COMS SRAM记忆晶胞所制成。DMD上层结构的制造是从完整CMOS内存电路开始,再透过光罩层的使用,制造出铝金属层和硬化光阻层交替的上层结构,铝金属层包括地址电极、绞链(hinge)、轭(yoke)和反射镜,硬化光阻层做为牺牲层(sacrificiallayer),用来形成两个空气间隙。铝金属经过溅镀沉积及等离子蚀刻处理,牺牲层则经过等离子去灰(plasma—ashed)处理,制造出层间的空气间隙。

  如果从技术角度来看,DMD芯片的构造包括了电子电路、机械和光学三个方面。其中电子电路部分为控制电路,机械部分为控制镜片转动的结构部分,光学器件部分便是指镜片部分。当DMD正常工作的时候,光线经过DMD芯片,DMD表面布满了体积微小的可转动镜片便会通过转动来反射光线,每个镜片的旋转都是由电路来控制的。每个镜子一次旋转只反射一种颜色(例如,投射紫颜色像素的微镜只负责在投影面上反射红蓝光,而投射桔红色像素的微镜只负责在投影面上按比例反射红和绿光(红色的比例高、绿色比例低),镜子的旋转速度可达到上千转,如此之多的镜子以如此之快的速度进行变化,光线通过镜头投射到屏幕上以后,给人的视觉器官造成错觉,人的肉眼错将快速闪动的三原色光混在一起,于是在投影的图像上看到混合后的颜色。

  如果你只想简单的了解DMD的工作原理,上一段文字已经够用了。如果你想穷根究底,下面我们就来一起来全面而详细的了解DMD芯片的构造和工作方式。

  在DMD芯片的最上面由数十万片面积为14×14微米、比头发断面还小的微镜片组成,增加DMD内微镜片的数量,即可提高产品的分辨率,而不须改变微镜片的大小 (例如分辨率为1024×768的投影机DMD芯片上有786432个小镜片),这些镜面经由下面被称为“轭”的装置链接,并被“扭力铰链”控制,可以左右翻转。前期的镜片的翻转角度仅为10°,后来德州仪器对镜片下方的链接部分进行了改善和简化,镜片的翻转角度提升到了12°。虽然仅仅提升了2度,但是成像过程中的杂散光线的影响被大大降低,对比度指标进一步提高。当记忆晶胞处于“ON”状态时,反射镜会旋转至+12度,若记忆晶胞处于“OFF”状态,反射镜会旋转至-12度。只要结合DMD以及适当光源和投影光学系统,反射镜就会把入射光反射进入或是离开投影镜头的透光孔,使得“0N”状态的反射镜看起来非常明亮,“0FF”状态的反射镜看起来很黑暗。利用二位脉冲宽度调变可以得到灰阶效果,如果使用固定式或旋转式彩色滤镜,再搭配一颗或三颗DMD芯片,即可得到彩色显示效果。配有一颗DMD芯片的DLP投影系统称为“单片DLP投影系统”,经色轮过滤后的光,至少可生成1670万种颜色。DMD的输入是由电流代表的电子字符,输出则是光学字符,这种光调变或开关技术又称为二位脉冲宽度调变,它会把8位字符送至DMD的每个数字光开关输入端,产生28或256个灰阶。

  目前DMD本身的光学有效面积也大大增强,已经能占到整个芯片表面积的90%以上,有效提升了光学利用率。另外还有一点需要进行了解:通过对每一个镜片下的存储单元以二进制平面信号进行电子化寻址,DMD阵列上的每个镜片被以静电方式倾斜为开或关态。决定每个镜片倾斜在哪个方向上为多长时间的技术被称为脉冲宽度调制(PWM)。 

  镜片下方的“轭”和“扭力铰链”采用被称为“面微加工(surface micromachining)多晶矽”方法制作,具有机构稳固性、灵活性强,成本低廉的特点。具体实现步骤是为机械单元选用铝合金材料,并以传统光阻作为牺牲空间。所有工作都在200℃以下完成,因此在晶片上增加MEMS时不会影响金属化制程或电晶体,也不会影响已经完成的CMOS电路。这种方法是MEMS微型反射镜的标准基础。同时又很好的解决了半导体制程、为机械制程和光学制程间肯能的相互破坏的问题。这种方法与其他MEMS制造方法全然不同, TI是目前仍采用这种方法的唯一一家公司。

  DMD芯片主要的工作方式是依据后端电路传递给CMOS芯片的不同信号,调控片上每个微镜的旋转位置,进而使得照射在微镜上的光线有选择的反射道不同方向。作为微型数字光学处理器件,DMD不仅是DLP投影机的核心组建,而且也被广泛应用到了印刷、可研等诸多需要数字光开关的领域,成为了微电子机械学MEMS最成功的产品之一。

  DarkChip——很多投影业内人士对这个词也比较熟悉,我们经常可以看到某些高端的1080p DLP投影机采用的是DarkChip4芯片组,那么其又是怎么回事呢?还有某些投影机特意标称产品是“数据投影机”或者“视频投影机”,他们之间采用的都是DLP技术,为什么会称呼不同呢?

  采用第一代DMD的DLP投影机仅仅是针对商务应用,分辨率是848X600,可以兼顾800X600的SVGA电脑标准和848x480的480p(16:9)视频标准。这一代的DMD微镜偏转角度为10度,对比度400:1至800:1不等。之后DLP投影机推出的第二代DMD芯片便开始进入家庭影院市场(之前的家庭影院投影机大多采用CRT技术),第二代芯片镜片的偏转角度提升到了12度,分辨率也提升到了720p。

  也就是从第二代DMD芯片开始,DLP投影机开始分为数据投影(商用)和视频投影(家用)两种按照应用方向发展的路线。德州仪器也对DMD芯片进行了最大的技术变革——将微镜非光学面的金属统统处理成黑色,此举大大降低来自金属反射出的杂散光,空前提升了DLP投影机的对比度,这一技术被称为“Darkchip 1”。当然,Darkchip也在不断的发展中,2007年9月德州仪器发布了最新一代“超黑”技术DarkChip 4,可将原始对比度提升高达30%。

首页|案例|行业资讯|视频演示|实用工具|关于我们
本站部分图文内容转载自互联网。您若发现有侵犯您著作权的,请及时告知,我们将在第一时间删除侵权作品,停止继续传播。
业绩榜http://www.yejibang.com 备案许可证号:陕ICP备11000217号-8

陕公网安备 61019002000416号